Extensions 1→N→G→Q→1 with N=C23 and Q=Dic10

Direct product G=N×Q with N=C23 and Q=Dic10
dρLabelID
C23×Dic10320C2^3xDic10320,1608

Semidirect products G=N:Q with N=C23 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C231Dic10 = C23⋊Dic10φ: Dic10/C10C22 ⊆ Aut C23160C2^3:1Dic10320,574
C232Dic10 = C232Dic10φ: Dic10/C10C22 ⊆ Aut C2380C2^3:2Dic10320,1155
C233Dic10 = C2×Dic5.14D4φ: Dic10/Dic5C2 ⊆ Aut C23160C2^3:3Dic10320,1153
C234Dic10 = C2×C20.48D4φ: Dic10/C20C2 ⊆ Aut C23160C2^3:4Dic10320,1456

Non-split extensions G=N.Q with N=C23 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C23.1Dic10 = C24.D10φ: Dic10/C10C22 ⊆ Aut C2380C2^3.1Dic10320,84
C23.2Dic10 = C24.2D10φ: Dic10/C10C22 ⊆ Aut C2380C2^3.2Dic10320,85
C23.3Dic10 = C20.51C42φ: Dic10/C10C22 ⊆ Aut C23804C2^3.3Dic10320,118
C23.4Dic10 = C24.6D10φ: Dic10/C10C22 ⊆ Aut C23160C2^3.4Dic10320,575
C23.5Dic10 = C24.7D10φ: Dic10/C10C22 ⊆ Aut C23160C2^3.5Dic10320,576
C23.6Dic10 = C23.Dic10φ: Dic10/C10C22 ⊆ Aut C23804C2^3.6Dic10320,751
C23.7Dic10 = M4(2).Dic5φ: Dic10/C10C22 ⊆ Aut C23804C2^3.7Dic10320,752
C23.8Dic10 = C20.34C42φ: Dic10/Dic5C2 ⊆ Aut C23160C2^3.8Dic10320,116
C23.9Dic10 = C24.44D10φ: Dic10/Dic5C2 ⊆ Aut C23160C2^3.9Dic10320,569
C23.10Dic10 = C24.46D10φ: Dic10/Dic5C2 ⊆ Aut C23160C2^3.10Dic10320,573
C23.11Dic10 = C24.47D10φ: Dic10/Dic5C2 ⊆ Aut C23160C2^3.11Dic10320,577
C23.12Dic10 = C2×C20.53D4φ: Dic10/Dic5C2 ⊆ Aut C23160C2^3.12Dic10320,750
C23.13Dic10 = C20.40C42φ: Dic10/C20C2 ⊆ Aut C23160C2^3.13Dic10320,110
C23.14Dic10 = C2×C40.6C4φ: Dic10/C20C2 ⊆ Aut C23160C2^3.14Dic10320,734
C23.15Dic10 = C24.62D10φ: Dic10/C20C2 ⊆ Aut C23160C2^3.15Dic10320,837
C23.16Dic10 = C24.64D10φ: Dic10/C20C2 ⊆ Aut C23160C2^3.16Dic10320,839
C23.17Dic10 = C2×C10.10C42central extension (φ=1)320C2^3.17Dic10320,835
C23.18Dic10 = C22×C10.D4central extension (φ=1)320C2^3.18Dic10320,1455
C23.19Dic10 = C22×C4⋊Dic5central extension (φ=1)320C2^3.19Dic10320,1457

׿
×
𝔽